# Load Data and packages
library(dplyr)
library(readxl)
library(tidyverse)
library(knitr)
library(ggplot2)
library(ggpubr)
library(stringr)
library(reshape2)
# Load Data
file <- "CoronaMonitorAll.csv"
corona <-read.csv(file,
sep=",",
encoding = "UTF-8",
stringsAsFactors = FALSE)
### 1. Inspect data
# Which variables are in the dataset
#colnames(corona)
# How many municipalities are in the dataset?
#unique(corona$gmd)
## Prepare dataset to merge on Gemeindenummer
# Backup and remove all rows with gmd = NA in new dataset
corona.backup <- corona
corona <- corona %>% filter(!is.na(gmd))
# Check
#unique(corona1$gmd)
### 2. Merge data on Gemeindenummer
# import .xlsx from bfs
raum_stadt <- read_excel("raum_stadt.xlsx")
agglo_groesse <- read_excel("agglo_groesse.xlsx")
# Clean up and better variable names
raum_stadt <- na.omit(raum_stadt)
agglo_groesse <- na.omit(agglo_groesse)
# rename colnames
raum_stadt <- raum_stadt %>% rename("gmd" = "Der Raum mit städtischem Charakter am 18.12.2014*",
"Gemeinde" = "...2",
"stadt" = "17718")
raum_stadt <- select(raum_stadt,-c(2))
agglo_groesse <- agglo_groesse %>% rename("gmd" = "5 Agglomerations-Grössenklassen der Schweiz am 31.12.2012",
"Gemeinde" = "...2",
"agglo" = "17773")
# Remove gmds in neigbouring countries to get 2352 gmds in both datasets
raum_stadt <- raum_stadt[! grepl("[A-Z]", raum_stadt$gmd),]
#colnames()
# Rename variable values
agglo_groesse <- agglo_groesse %>%
mutate(agglo = case_when(agglo == "Keine Agglomerationszugehörigkeit" ~ 0,
agglo == "500 000 und mehr Einwohner/innen" ~ 1,
agglo == "200 000 - 499 999 Einwohner/innen" ~ 2,
agglo == "100 000 - 199 999 Einwohner/innen" ~ 3,
agglo == "50 000 - 99 999 Einwohner/innen" ~ 4,
agglo == "< 50 000 Einwohner/innen" ~ 5))
raum_stadt <- raum_stadt %>%
mutate(stadt = case_when(stadt == "Ländliche Gemeinde ohne städtischen Charakter" ~ 0,
stadt == "Agglomerationskerngemeinde (Kernstadt)" ~ 1,
stadt == "Agglomerationskerngemeinde (Hauptkern)" ~ 2,
stadt == "Agglomerationskerngemeinde (Nebenkern)" ~ 3,
stadt == "Agglomerationsgürtelgemeinde" ~ 4,
stadt == "Mehrfach orientierte Gemeinde" ~ 5,
stadt == "Kerngemeinde ausserhalb Agglomerationen" ~ 6))
#unique(raum_stadt$stadt)
# Merge the dataframes by "gmd"
corona.merged <- merge(x = corona, y = agglo_groesse, by = "gmd" , all.x = TRUE)
corona.merged <- merge(x = corona.merged, y = raum_stadt, by = "gmd" , all.x = TRUE)
# Create the five categories
# Stadt/Land Einteilung
corona.merged <- corona.merged %>%
mutate(stadt.land = case_when(agglo %in% c(1,2,3) & stadt %in% c(1,2) ~ "grosse Kernstadt", #condition 1
agglo %in% c(4,5,0) & stadt %in% c(1,2) ~ "kleine Kernstadt", #condition 2
agglo %in% c(1,2,3) & stadt %in% c(3,4,5) ~ "grosse Agglomeration", #condition 3
agglo %in% c(4,5,0) & stadt %in% c(3,4,5) ~ "kleine Agglomeration", #condition 4
stadt %in% c(0,6) ~ "ländlicher Raum")) #condition 5
#table(corona.merged$stadt.land)
#sum(is.na(corona.merged.sel$stadt.land))
# Es gibt Gemeinden, die durch Fusionen erst nach 2015 entstanden sind. Diese Gemeinden () sind in den Datensätzen, die der Einteilung in städtische und ländliche Gemeinden zugrunde liegen, noch nicht eingetragen. Sie wurden deshalb in dieser Arbeit nicht berücksichtigt. Es handelt sich im 2048 von insgesamt 142'335 Beobachtungen.
### 3. Create final Dataset with only potentially relevant data for this project
corona.merged.sel <- corona.merged %>%
select("gmd", "stadt.land", "agglo", "stadt", "Gemeinde", "kanton", "alltagHeraus", "coronagefahr", "massnBewegung", "massnLockdown", "massnWirtsch", "massnLohn", "reaktionSpeed", "vertrauen", "Welle", "datestamp", "singVerbot", "sportVerbot", "massnQuarantaene", "alltagcontact")
# Remove NAs from variable Stadt.Land
corona.merged.sel <- corona.merged.sel %>% filter(!is.na(stadt.land))
### 4. Get Plots for massnBewegung
## Welle 1 massnBewegung
## remove blanks in variable massnBewegung
corona.merged.bew <- corona.merged.sel %>% filter(!massnBewegung=="")
# Divide dataset into five waves
corona.1.bew <- corona.merged.bew %>%
filter(Welle == "1")
corona.2.bew <- corona.merged.bew %>%
filter(Welle == "2")
corona.3.bew <- corona.merged.bew %>%
filter(Welle == "3")
corona.4.bew <- corona.merged.bew %>%
filter(Welle == "4")
corona.5.bew <- corona.merged.bew %>%
filter(Welle == "5")
# Get percentages for massnBewegung
# Create frequency table
table.1.bew <- corona.1.bew %>%
group_by(massnBewegung, stadt.land) %>%
tally()
# get percentages
perc.1.bew <- table.1.bew %>%
group_by(stadt.land) %>%
mutate(percentage1 = n/sum(n) * 100)
## Welle 2 massnBewegung
table.2.bew <- corona.2.bew %>%
group_by(massnBewegung, stadt.land) %>%
tally()
perc.2.bew <- table.2.bew %>%
group_by(stadt.land) %>%
mutate(percentage2 = n/sum(n) * 100)
## Welle 3 massnBewegung
table.3.bew <- corona.3.bew %>%
group_by(massnBewegung, stadt.land) %>%
tally()
perc.3.bew <- table.3.bew %>%
group_by(stadt.land) %>%
mutate(percentage3 = n/sum(n) * 100)
## Welle 4 massnBewegung
table.4.bew <- corona.4.bew %>%
group_by(massnBewegung, stadt.land) %>%
tally()
perc.4.bew <- table.4.bew %>%
group_by(stadt.land) %>%
mutate(percentage4 = n/sum(n) * 100)
## Welle 5 massnBewegung
table.5.bew <- corona.5.bew %>%
group_by(massnBewegung, stadt.land) %>%
tally()
perc.5.bew <- table.5.bew %>%
group_by(stadt.land) %>%
mutate(percentage5 = n/sum(n) * 100)
# create one table for all observations
table.massnBewegung <- perc.1.bew
table.massnBewegung <- table.massnBewegung[ -c(3) ]
table.massnBewegung$percentage2 <- perc.2.bew$percentage2
table.massnBewegung$percentage3 <- perc.3.bew$percentage3
table.massnBewegung$percentage4 <- perc.4.bew$percentage4
table.massnBewegung$percentage5 <- perc.5.bew$percentage5
### 4.1 Show results in stacked barplots
# change order of factors
table.massnBewegung$massnBewegung <- factor(table.massnBewegung$massnBewegung, levels=c("Gehen viel zu weit", "Gehen eher zu weit", "Sind angemessen", "Gehen eher zu wenig weit","Gehen viel zu wenig weit"))
table.massnBewegung$stadt.land <- factor(table.massnBewegung$stadt.land, levels=c("grosse Kernstadt", "kleine Kernstadt", "grosse Agglomeration", "kleine Agglomeration","ländlicher Raum"))
# percentage stacked barplot
data <- table.massnBewegung
plot.1.bew <- ggplot(data, aes(fill=table.massnBewegung$massnBewegung, y=table.massnBewegung$percentage1, x=table.massnBewegung$stadt.land)) +
geom_bar(position="fill", stat="identity") +
labs(title = "März",
fill = "",
x = "", y = "") +
scale_fill_brewer(palette = "Set4") +
scale_y_continuous(labels=function(x) paste0(x,"%")) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
plot.title = element_text(size = 8, hjust = 0.5),
axis.text.x = element_text(angle = 90, vjust = 0.0, hjust=1))
plot.2.bew <- ggplot(data, aes(fill=table.massnBewegung$massnBewegung, y=table.massnBewegung$percentage2, x=table.massnBewegung$stadt.land)) +
geom_bar(position="fill", stat="identity") +
labs(title = "Bewegungsfreiheit \nim April",
fill = "",
x = "", y = "") +
scale_fill_brewer(palette = "Set4") +
scale_y_continuous(labels = scales::percent) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
plot.title = element_text(size = 7.5, hjust = 0.5),
axis.text.x = element_text(angle = 90, vjust = 0.0, hjust=1))
plot.3.bew <- ggplot(data, aes(fill=table.massnBewegung$massnBewegung, y=table.massnBewegung$percentage3, x=table.massnBewegung$stadt.land)) +
geom_bar(position="fill", stat="identity") +
labs(title = "Mai",
fill = "",
x = "", y = "") +
scale_fill_brewer(palette = "Set4") +
scale_y_continuous(labels=function(x) paste0(x,"%")) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
plot.title = element_text(size = 8, hjust = 0.5),
axis.text.x = element_text(angle = 90, vjust = 0.0, hjust=1))
plot.4.bew <- ggplot(data, aes(fill=table.massnBewegung$massnBewegung, y=table.massnBewegung$percentage4, x=table.massnBewegung$stadt.land)) +
geom_bar(position="fill", stat="identity") +
labs(title = "Bewegungsfreiheit \nim Juni",
fill = "",
x = "", y = "") +
scale_fill_brewer(palette = "Set4") +
scale_y_continuous(labels = scales::percent) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
plot.title = element_text(size = 7.5, hjust = 0.5),
axis.text.x = element_text(angle = 90, vjust = 0.0, hjust=1))
plot.5.bew <- ggplot(data, aes(fill=table.massnBewegung$massnBewegung, y=table.massnBewegung$percentage5, x=table.massnBewegung$stadt.land)) +
geom_bar(position="fill", stat="identity") +
labs(title = "Bewegungsfreiheit \nim Oktober",
fill = "",
x = "", y = "") +
scale_fill_brewer(palette = "Set4") +
scale_y_continuous(labels=function(x) paste0(x,"%")) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
plot.title = element_text(size = 7.5, hjust = 0.5),
axis.text.x = element_text(angle = 90, vjust = 0.0, hjust=1),
axis.text.y = element_blank(),
axis.ticks.y = element_blank())
#axis.text.y = element_blank(),
#axis.ticks.y = element_blank()
# Get a nice plot for overview
plot.wrap.bew <- ggarrange(plot.1.bew, plot.2.bew, plot.3.bew, plot.4.bew, plot.5.bew, nrow = 1, common.legend = TRUE, legend = "top")
annotate_figure(plot.wrap.bew, top = text_grob("Einschränkung der Bewegungsfreiheit", size = 12),
bottom = text_grob("Daten: Sotomo", face = "italic", size = 7))
![]()
### 5. Get Plot for massnLohn
## Welle 1 massnLohn
## remove blanks in varaible massnBewegung
corona.merged.lohn <- corona.merged.sel %>% filter(!massnLohn=="")
# Divide dataset into five waves
corona.1.lohn <- corona.merged.lohn %>%
filter(Welle == "1")
corona.2.lohn <- corona.merged.lohn %>%
filter(Welle == "2")
corona.3.lohn <- corona.merged.lohn %>%
filter(Welle == "3")
corona.4.lohn <- corona.merged.lohn %>%
filter(Welle == "4")
corona.5.lohn <- corona.merged.lohn %>%
filter(Welle == "5")
# Get percentages for massnLohn
# Create frequency table
table.1.lohn <- corona.1.lohn %>%
group_by(massnLohn, stadt.land) %>%
tally()
# get percentages
perc.1.lohn <- table.1.lohn %>%
group_by(stadt.land) %>%
mutate(percentage1 = n/sum(n) * 100)
## Welle 2 massnLohn
table.2.lohn <- corona.2.lohn %>%
group_by(massnLohn, stadt.land) %>%
tally()
perc.2.lohn <- table.2.lohn %>%
group_by(stadt.land) %>%
mutate(percentage2 = n/sum(n) * 100)
## Welle 3 massnLohn
table.3.lohn <- corona.3.lohn %>%
group_by(massnLohn, stadt.land) %>%
tally()
perc.3.lohn <- table.3.lohn %>%
group_by(stadt.land) %>%
mutate(percentage3 = n/sum(n) * 100)
## Welle 4 massnLohn
table.4.lohn <- corona.4.lohn %>%
group_by(massnLohn, stadt.land) %>%
tally()
perc.4.lohn <- table.4.lohn %>%
group_by(stadt.land) %>%
mutate(percentage4 = n/sum(n) * 100)
## Welle 5 massnLohn
table.5.lohn <- corona.5.lohn %>%
group_by(massnLohn, stadt.land) %>%
tally()
perc.5.lohn <- table.5.lohn %>%
group_by(stadt.land) %>%
mutate(percentage5 = n/sum(n) * 100)
# create one table for all observations
table.massnLohn <- perc.1.lohn
table.massnLohn <- table.massnLohn[ -c(3) ]
table.massnLohn$percentage2 <- perc.2.lohn$percentage2
table.massnLohn$percentage3 <- perc.3.lohn$percentage3
table.massnLohn$percentage4 <- perc.4.lohn$percentage4
table.massnLohn$percentage5 <- perc.5.lohn$percentage5
### 5.1 Show results in stacked barplots
# change order of factors
table.massnLohn$massnLohn <- factor(table.massnLohn$massnLohn, levels=c("Gehen viel zu weit", "Gehen eher zu weit", "Sind angemessen", "Gehen eher zu wenig weit","Gehen viel zu wenig weit"))
table.massnLohn$stadt.land <- factor(table.massnLohn$stadt.land, levels=c("grosse Kernstadt", "kleine Kernstadt", "grosse Agglomeration", "kleine Agglomeration","ländlicher Raum"))
# percentage stacked barplot
data1 <- table.massnLohn
plot.1.lohn <- ggplot(data1, aes(fill=table.massnLohn$massnLohn, y=table.massnLohn$percentage1, x=table.massnLohn$stadt.land)) +
geom_bar(position="fill", stat="identity") +
labs(title = "März",
fill = "",
x = "", y = "") +
scale_fill_brewer(palette = "Set4") +
scale_y_continuous(labels=function(x) paste0(x,"%")) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
plot.title = element_text(size = 8, hjust = 0.5),
axis.text.x = element_text(angle = 90, vjust = 0.0, hjust=1))
plot.2.lohn <- ggplot(data1, aes(fill=table.massnLohn$massnLohn, y=table.massnLohn$percentage2, x=table.massnLohn$stadt.land)) +
geom_bar(position="fill", stat="identity") +
labs(title = "Abfederung Lohnausfall \nim April",
fill = "",
x = "", y = "") +
scale_fill_brewer(palette = "Set4") +
scale_y_continuous(labels = scales::percent) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
plot.title = element_text(size = 7.5, hjust = 0.5),
axis.text.x = element_text(angle = 90, vjust = 0.0, hjust=1))
plot.3.lohn <- ggplot(data1, aes(fill=table.massnLohn$massnLohn, y=table.massnLohn$percentage3, x=table.massnLohn$stadt.land)) +
geom_bar(position="fill", stat="identity") +
labs(title = "Mai",
fill = "",
x = "", y = "") +
scale_fill_brewer(palette = "Set4") +
scale_y_continuous(labels=function(x) paste0(x,"%")) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
plot.title = element_text(size = 8, hjust = 0.5),
axis.text.x = element_text(angle = 90, vjust = 0.0, hjust=1))
plot.4.lohn <- ggplot(data1, aes(fill=table.massnLohn$massnLohn, y=table.massnLohn$percentage4, x=table.massnLohn$stadt.land)) +
geom_bar(position="fill", stat="identity") +
labs(title = "Abfederung Lohnausfall \nim Juni",
fill = "",
x = "", y = "") +
scale_fill_brewer(palette = "Set4") +
scale_y_continuous(labels = scales::percent) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
plot.title = element_text(size = 7.5, hjust = 0.5),
axis.text.x = element_text(angle = 90, vjust = 0.0, hjust=1))
plot.5.lohn <- ggplot(data1, aes(fill=table.massnLohn$massnLohn, y=table.massnLohn$percentage5, x=table.massnLohn$stadt.land)) +
geom_bar(position="fill", stat="identity") +
labs(title = "Abfederung Lohnausfall \nim Oktober",
fill = "",
x = "", y = "") +
scale_fill_brewer(palette = "Set4") +
scale_y_continuous(labels=function(x) paste0(x,"%")) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
plot.title = element_text(size = 7.5, hjust = 0.5),
axis.text.x = element_text(angle = 90, vjust = 0.0, hjust=1),
axis.text.y = element_blank(),
axis.ticks.y = element_blank())
# Get a nice plot
plot.wrap.lohn <- ggarrange(plot.1.lohn, plot.2.lohn, plot.3.lohn, plot.4.lohn, plot.5.lohn, nrow = 1, common.legend = TRUE, legend = "top")
annotate_figure(plot.wrap.lohn, top = text_grob("Abfederung von Lohnausfällen", size = 12),
bottom = text_grob("", face = "italic", size = 7))
![]()
### 6. Get Plot for massnLock
## Welle 1 massnLock
## remove blanks in variable massnLockdown
corona.merged.lock <- corona.merged.sel %>% filter(!massnLockdown=="")
# Divide dataset into five waves
corona.1.lock <- corona.merged.lock %>%
filter(Welle == "1")
corona.2.lock <- corona.merged.lock %>%
filter(Welle == "2")
corona.3.lock <- corona.merged.lock %>%
filter(Welle == "3")
corona.4.lock <- corona.merged.lock %>%
filter(Welle == "4")
corona.5.lock <- corona.merged.lock %>%
filter(Welle == "5")
# Get percentages for massnLock
# Create frequency table
table.1.lock <- corona.1.lock %>%
group_by(massnLockdown, stadt.land) %>%
tally()
# get percentages
perc.1.lock <- table.1.lock %>%
group_by(stadt.land) %>%
mutate(percentage1 = n/sum(n) * 100)
## Welle 2
table.2.lock <- corona.2.lock %>%
group_by(massnLockdown, stadt.land) %>%
tally()
perc.2.lock <- table.2.lock %>%
group_by(stadt.land) %>%
mutate(percentage2 = n/sum(n) * 100)
## Welle 3
table.3.lock <- corona.3.lock %>%
group_by(massnLockdown, stadt.land) %>%
tally()
perc.3.lock <- table.3.lock %>%
group_by(stadt.land) %>%
mutate(percentage3 = n/sum(n) * 100)
## Welle 4
table.4.lock <- corona.4.lock %>%
group_by(massnLockdown, stadt.land) %>%
tally()
perc.4.lock <- table.4.lock %>%
group_by(stadt.land) %>%
mutate(percentage4 = n/sum(n) * 100)
## Welle 5
table.5.lock <- corona.5.lock %>%
group_by(massnLockdown, stadt.land) %>%
tally()
perc.5.lock <- table.5.lock %>%
group_by(stadt.land) %>%
mutate(percentage5 = n/sum(n) * 100)
# create one table for all observations
table.massnlock <- perc.1.lock
table.massnlock <- table.massnlock[ -c(3) ]
table.massnlock$percentage2 <- perc.2.lock$percentage2
table.massnlock$percentage3 <- perc.3.lock$percentage3
table.massnlock$percentage4 <- perc.4.lock$percentage4
table.massnlock$percentage5 <- perc.5.lock$percentage5
### 6.1 Show results in stacked barplots
# change order of factors
table.massnlock$massnLockdown <- factor(table.massnlock$massnLockdown, levels=c("Gehen viel zu weit", "Gehen eher zu weit", "Sind angemessen", "Gehen eher zu wenig weit","Gehen viel zu wenig weit"))
table.massnlock$stadt.land <- factor(table.massnlock$stadt.land, levels=c("grosse Kernstadt", "kleine Kernstadt", "grosse Agglomeration", "kleine Agglomeration","ländlicher Raum"))
# percentage stacked barplot
data2 <- table.massnlock
plot.1.lock <- ggplot(data2, aes(fill=table.massnlock$massnLockdown, y=table.massnlock$percentage1, x=table.massnlock$stadt.land)) +
geom_bar(position="fill", stat="identity") +
labs(title = "März",
fill = "",
x = "", y = "") +
scale_fill_brewer(palette = "Set4") +
scale_y_continuous(labels=function(x) paste0(x,"%")) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
plot.title = element_text(size = 8, hjust = 0.5),
axis.text.x = element_text(angle = 90, vjust = 0.0, hjust=1))
plot.2.lock <- ggplot(data2, aes(fill=table.massnlock$massnLockdown, y=table.massnlock$percentage2, x=table.massnlock$stadt.land)) +
geom_bar(position="fill", stat="identity") +
labs(title = "Schliessung Geschäfte \nim April",
fill = "",
x = "", y = "") +
scale_fill_brewer(palette = "Set4") +
scale_y_continuous(labels = scales::percent) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
plot.title = element_text(size = 7.5, hjust = 0.5),
axis.text.x = element_text(angle = 90, vjust = 0.0, hjust=1))
plot.3.lock <- ggplot(data2, aes(fill=table.massnlock$massnLockdown, y=table.massnlock$percentage3, x=table.massnlock$stadt.land)) +
geom_bar(position="fill", stat="identity") +
labs(title = "Mai",
fill = "",
x = "", y = "") +
scale_fill_brewer(palette = "Set4") +
scale_y_continuous(labels=function(x) paste0(x,"%")) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
plot.title = element_text(size = 8, hjust = 0.5),
axis.text.x = element_text(angle = 90, vjust = 0.0, hjust=1))
plot.4.lock <- ggplot(data2, aes(fill=table.massnlock$massnLockdown, y=table.massnlock$percentage4, x=table.massnlock$stadt.land)) +
geom_bar(position="fill", stat="identity") +
labs(title = "Eingriffe in Wirtschaft \nim Juni",
fill = "",
x = "", y = "") +
scale_fill_brewer(palette = "Set4") +
scale_y_continuous(labels = scales::percent) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
plot.title = element_text(size = 7.5, hjust = 0.5),
axis.text.x = element_text(angle = 90, vjust = 0.0, hjust=1))
plot.5.lock <- ggplot(data2, aes(fill=table.massnlock$massnLockdown, y=table.massnlock$percentage5, x=table.massnlock$stadt.land)) +
geom_bar(position="fill", stat="identity") +
labs(title = "Eingriffe in Wirtschaft \nim Oktober",
fill = "",
x = "", y = "") +
scale_fill_brewer(palette = "Set4") +
scale_y_continuous(labels=function(x) paste0(x,"%")) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
plot.title = element_text(size = 7.5, hjust = 0.5),
axis.text.x = element_text(angle = 90, vjust = 0.0, hjust=1),
axis.text.y = element_blank(),
axis.ticks.y = element_blank())
# Get a nice plot
plot.wrap.lock <- ggarrange(plot.1.lock, plot.2.lock, plot.3.lock, plot.4.lock, plot.5.lock, nrow = 1, common.legend = TRUE, legend = "top")
annotate_figure(plot.wrap.lock, top = text_grob("Schliessung von Geschäften und Dienstleistungen", size = 12),
bottom = text_grob("", face = "italic", size = 7))
![]()
# Get the final plot with comparison between June and october for each policy
plot.wrap.final2 <- ggarrange(plot.4.bew, plot.5.bew, plot.4.lock, plot.5.lock, plot.4.lohn, plot.5.lohn, nrow = 1, widths = c(1,0.8,1,0.8,1,0.8), common.legend = TRUE, legend = "top")
plot.wrap.final2 <- annotate_figure(plot.wrap.final2, top = text_grob("Einschätzung politischer Massnahmen zur Eindämmung des Coronavirus", size = 14),
bottom = text_grob("", face = "italic", size = 7))
plot.wrap.final2
![]()
#ggsave(plot.wrap.final2, file = "Akzeptanz.png", width = 9, height = 7)
### 7. Get Plot for Differences
# Create table
table.diff <- perc.4.bew
table.diff <- table.diff[ -c(3) ]
table.diff$percentage.bew.5 <- perc.5.bew$percentage5
table.diff$percentage.lock.4 <- perc.4.lock$percentage4
table.diff$percentage.lock.5 <- perc.5.lock$percentage5
table.diff$percentage.lohn.4 <- perc.4.lohn$percentage4
table.diff$percentage.lohn.5 <- perc.5.lohn$percentage5
# drop unnecessary rows
table.diff1 <- table.diff %>% filter(!stadt.land=="grosse Agglomeration")
table.diff1 <- table.diff1 %>% filter(!stadt.land=="kleine Agglomeration")
table.diff1 <- table.diff1 %>% filter(!stadt.land=="kleine Kernstadt")
# drop unnecessary answers for lockdown and Bewegung
table.diff1 <- table.diff1 %>% filter(!massnBewegung=="Sind angemessen")
table.diff1 <- table.diff1 %>% filter(!massnBewegung=="Gehen viel zu wenig weit")
table.diff1 <- table.diff1 %>% filter(!massnBewegung=="Gehen eher zu wenig weit")
# Get sums for massnBewegung
sum.bew.4l <-sum(subset(table.diff1, stadt.land == "ländlicher Raum")$percentage4)
sum.bew.4s <-sum(subset(table.diff1, stadt.land == "grosse Kernstadt")$percentage4)
sum.bew.5l <-sum(subset(table.diff1, stadt.land == "ländlicher Raum")$percentage.bew.5)
sum.bew.5s <-sum(subset(table.diff1, stadt.land == "grosse Kernstadt")$percentage.bew.5)
# Get sums for massnLockdwon
sum.lock.4l <-sum(subset(table.diff1, stadt.land == "ländlicher Raum")$percentage.lock.4)
sum.lock.4s <-sum(subset(table.diff1, stadt.land == "grosse Kernstadt")$percentage.lock.4)
sum.lock.5l <-sum(subset(table.diff1, stadt.land == "ländlicher Raum")$percentage.lock.5)
sum.lock.5s <-sum(subset(table.diff1, stadt.land == "grosse Kernstadt")$percentage.lock.5)
# create a dataframe
answer <- c(rep("Einschränkung Bewegungsfreiheit \nim Juni" , 2) , rep("Einschränkung Bewegungsfreiheit \nim Oktober" , 2) , rep("Eingriffe in Wirtschaft \nim Juni" , 2) , rep("Eingriffe in Wirtschaft \nim Oktober" , 2) )
stadtland <- rep(c("grosse Kernstadt" , "ländlicher Raum") , 4)
value <- c(sum.bew.4s, sum.bew.4l, sum.bew.5s, sum.bew.5l, sum.lock.4s, sum.lock.4l, sum.lock.5s, sum.lock.5l)
data4 <- data.frame(answer,stadtland,value)
# Grouped plot
data4$answer <- factor(data4$answer, levels = c("Eingriffe in Wirtschaft \nim Oktober", "Eingriffe in Wirtschaft \nim Juni", "Einschränkung Bewegungsfreiheit \nim Oktober", "Einschränkung Bewegungsfreiheit \nim Juni"))
plot.diff <- ggplot(data4, aes(fill=stadtland, y=value, x=answer)) +
geom_bar(position="dodge", stat="identity") +
scale_y_continuous(labels=function(x) paste0(x,"%")) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
legend.title = element_blank(),
axis.ticks.y = element_blank(),
axis.line.x = element_line()) +
scale_fill_brewer(palette = "Set4") +
geom_text(x= .8, y = 4, label= round(data4[7,3], digits = 0), color="grey34") +
geom_text(x= 1.2, y= 4, label= round(data4[8,3], digits = 0), color="grey34") +
geom_text(x= 1.8, y= 4, label= round(data4[5,3], digits = 0), color="grey34") +
geom_text(x= 2.2, y= 4, label= round(data4[6,3], digits = 0), color="grey34") +
geom_text(x= 2.8, y= 4, label= round(data4[3,3], digits = 0), color="grey34") +
geom_text(x= 3.2, y= 4, label= round(data4[4,3], digits = 0), color="grey34") +
geom_text(x= 3.8, y= 4, label= round(data4[1,3], digits = 0), color="grey34") +
geom_text(x= 4.2, y= 4, label= round(data4[2,3], digits = 0), color="grey34") +
ylab("Bevölkerungsanteil, dem die Massnahmen zu weit gehen") +
xlab("") +
coord_flip()
plot.diff <- annotate_figure(plot.diff, top = text_grob("Corona-Massnahmen werden im ländlichen Raum kritischer gesehen", size = 14), bottom = text_grob("", face = "italic", size = 7))
plot.diff
![]()
#ggsave(plot.diff, file = "Different.png", width = 9, height = 7)
### 8. Get means of "Vertrauen in Bundesrat"
## remove blanks in varaible massnBewegung
corona.merged.br <- corona.merged.sel %>% filter(!vertrauen=="")
corona.merged.br <- corona.merged.br %>%
mutate(vertrauen = as.numeric(str_extract(vertrauen, "[0-9]+")))
# Divide dataset into five waves
corona.1.br <- corona.merged.br %>%
filter(Welle == "1")
corona.2.br <- corona.merged.br %>%
filter(Welle == "2")
corona.3.br <- corona.merged.br %>%
filter(Welle == "3")
corona.4.br <- corona.merged.br %>%
filter(Welle == "4")
corona.5.br <- corona.merged.br %>%
filter(Welle == "5")
## Welle 1 vertrauen
# get means
table.1.br <- corona.1.br %>%
group_by(stadt.land) %>%
mutate(mean1 = weighted.mean(vertrauen, weight = weight)) %>%
select(stadt.land, mean1) %>%
distinct()
## Welle 2
table.2.br <- corona.2.br %>%
group_by(stadt.land) %>%
mutate(mean2 = weighted.mean(vertrauen, weight = weight)) %>%
select(stadt.land, mean2) %>%
distinct()
## Welle 3
table.3.br <- corona.3.br %>%
group_by(stadt.land) %>%
mutate(mean3 = weighted.mean(vertrauen, weight = weight)) %>%
select(stadt.land, mean3) %>%
distinct()
## Welle 4
table.4.br <- corona.4.br %>%
group_by(stadt.land) %>%
mutate(mean4 = weighted.mean(vertrauen, weight = weight)) %>%
select(stadt.land, mean4) %>%
distinct()
## Welle 5
table.5.br <- corona.5.br %>%
group_by(stadt.land) %>%
mutate(mean5 = weighted.mean(vertrauen, weight = weight)) %>%
select(stadt.land, mean5) %>%
distinct()
# create one table for all observations
table.br <- table.1.br
table.br$mean2 <- table.2.br$mean2
table.br$mean3 <- table.3.br$mean3
table.br$mean4 <- table.4.br$mean4
table.br$mean5 <- table.5.br$mean5
# Compare deutschschweiz and romandie
# Divide original dataset into five waves
corona.1.br1 <- corona.backup %>%
filter(Welle == "1")
corona.2.br1 <- corona.backup %>%
filter(Welle == "2")
corona.3.br1 <- corona.backup %>%
filter(Welle == "3")
corona.4.br1 <- corona.backup %>%
filter(Welle == "4")
corona.5.br1 <- corona.backup %>%
filter(Welle == "5")
# Means Welle 1
romandie.1.br <- corona.1.br1%>%
filter(kanton %in% c("Genf", "Wallis", "Freiburg","Waadt", "Neuenburg", "Jura"))%>%
mutate(vertrauen = as.numeric(str_extract(vertrauen, "[0-9]+")))%>%
mutate(vertrauen = weighted.mean(vertrauen, na.rm=T, weight = weight))%>%
select(kanton, vertrauen)
deutsch.1.br <- corona.1.br1%>%
filter(!kanton %in% c("Genf", "Wallis", "Freiburg","Waadt", "Neuenburg", "Jura", "Tessin"))%>%
mutate(vertrauen = as.numeric(str_extract(vertrauen, "[0-9]+")))%>%
mutate(vertrauen = weighted.mean(vertrauen, na.rm=T, weight = weight))%>%
select(kanton, vertrauen)
# Means Welle 2
romandie.2.br <- corona.2.br1%>%
filter(kanton %in% c("Genf", "Wallis", "Freiburg","Waadt", "Neuenburg", "Jura"))%>%
mutate(vertrauen = as.numeric(str_extract(vertrauen, "[0-9]+")))%>%
mutate(vertrauen = weighted.mean(vertrauen, na.rm=T, weight = weight))%>%
select(kanton, vertrauen)
deutsch.2.br <- corona.2.br1 %>%
filter(!kanton %in% c("Genf", "Wallis", "Freiburg","Waadt", "Neuenburg", "Jura", "Tessin"))%>%
mutate(vertrauen = as.numeric(str_extract(vertrauen, "[0-9]+")))%>%
mutate(vertrauen = weighted.mean(vertrauen, na.rm=T, weight = weight))%>%
select(kanton, vertrauen)
# Means Welle 3
romandie.3.br <- corona.3.br1 %>%
filter(kanton %in% c("Genf", "Wallis", "Freiburg","Waadt", "Neuenburg", "Jura"))%>%
mutate(vertrauen = as.numeric(str_extract(vertrauen, "[0-9]+")))%>%
mutate(vertrauen = weighted.mean(vertrauen, na.rm=T, weight = weight))%>%
select(kanton, vertrauen)
deutsch.3.br <- corona.3.br1 %>%
filter(!kanton %in% c("Genf", "Wallis", "Freiburg","Waadt", "Neuenburg", "Jura", "Tessin"))%>%
mutate(vertrauen = as.numeric(str_extract(vertrauen, "[0-9]+")))%>%
mutate(vertrauen = weighted.mean(vertrauen, na.rm=T, weight = weight))%>%
select(kanton, vertrauen)
# Means Welle 4
romandie.4.br <- corona.4.br1 %>%
filter(kanton %in% c("Genf", "Wallis", "Freiburg","Waadt", "Neuenburg", "Jura"))%>%
mutate(vertrauen = as.numeric(str_extract(vertrauen, "[0-9]+")))%>%
mutate(vertrauen = weighted.mean(vertrauen, na.rm=T, weight = weight))%>%
select(kanton, vertrauen)
deutsch.4.br <- corona.4.br1 %>%
filter(!kanton %in% c("Genf", "Wallis", "Freiburg","Waadt", "Neuenburg", "Jura", "Tessin"))%>%
mutate(vertrauen = as.numeric(str_extract(vertrauen, "[0-9]+")))%>%
mutate(vertrauen = weighted.mean(vertrauen, na.rm=T, weight = weight))%>%
select(kanton, vertrauen)
# Means Welle 5
romandie.5.br <- corona.5.br1 %>%
filter(kanton %in% c("Genf", "Wallis", "Freiburg","Waadt", "Neuenburg", "Jura"))%>%
mutate(vertrauen = as.numeric(str_extract(vertrauen, "[0-9]+")))%>%
mutate(vertrauen = weighted.mean(vertrauen, na.rm=T, weight = weight))%>%
select(kanton, vertrauen)
deutsch.5.br <- corona.5.br1 %>%
filter(!kanton %in% c("Genf", "Wallis", "Freiburg","Waadt", "Neuenburg", "Jura", "Tessin"))%>%
mutate(vertrauen = as.numeric(str_extract(vertrauen, "[0-9]+")))%>%
mutate(vertrauen = weighted.mean(vertrauen, na.rm=T, weight = weight))%>%
select(kanton, vertrauen)
# Add to dataframe
# romandie
romandie <- data.frame("Romandie", unique(romandie.1.br$vertrauen), unique(romandie.2.br$vertrauen), unique(romandie.3.br$vertrauen),
unique(romandie.4.br$vertrauen), unique(romandie.5.br$vertrauen))
names(romandie) <- c("stadt.land", "mean1", "mean2","mean3","mean4","mean5")
table.br1 <- rbind(table.br, romandie)
# deutschweiz
deutsch <- data.frame("Deutschschweiz", unique(deutsch.1.br$vertrauen), unique(deutsch.2.br$vertrauen), unique(deutsch.3.br$vertrauen),
unique(deutsch.4.br$vertrauen), unique(deutsch.5.br$vertrauen))
names(deutsch) <- c("stadt.land", "mean1", "mean2","mean3","mean4","mean5")
table.br2 <- rbind(table.br1, deutsch)
# get only relevant rows
data5 <- table.br2[-c(1, 2, 3), ]
data5 <- rename(data5, "März" = "mean1", "April" = "mean2", "Mai" = "mean3", "Juni" = "mean4", "Oktober" = "mean5")
data6 <- melt(data5, id.vars = "stadt.land", measure.vars = c("März", "April", "Mai", "Juni", "Oktober"))
data6$stadt.land <- factor(data6$stadt.land, levels = c("grosse Kernstadt", "ländlicher Raum",
"Deutschschweiz", "Romandie"))
plot.br <- ggplot(data6, aes(x=variable, y=value)) +
geom_line(aes(group=stadt.land, color = stadt.land), size = 1) +
geom_point(aes(color=stadt.land)) +
coord_cartesian(ylim = c(2.5, 4.5)) +
labs(title = "Ob Stadt oder Land: Das Vertrauen in den Bundesrat sinkt",
subtitle = "")+
ylab("Vertrauen in Bundesrat: 1 = sehr klein bis 5 = sehr gross")+
xlab("")+
scale_color_manual(values = c("#FE9A2E", "#04B404", "#08088A", "#8A084B"))+
theme(legend.title = element_blank(),
axis.text.x = element_text(angle = 60, vjust = 0.5, face = "bold"),
panel.background = element_rect(fill="white"),
panel.grid.minor.y = element_line(size=1),
panel.grid.major = element_line(colour = "grey"),
axis.ticks.y = element_blank(),
axis.ticks.x = element_blank(),
plot.title = element_text(size=12))
plot.br
![]()
#ggsave(plot.br, file = "vertrauen.png", width = 7, height = 7)